期刊信息
 

刊名:智能城市
曾用名:现代生活用品
主办:辽宁省科学技术情报研究所
主管:辽宁省科学技术厅
ISSN:2096-1936
CN:21-1602/N
语言:中文
周期:半月刊
影响因子:0
被引频次:9440
数据库收录:
国家哲学社会科学学术期刊数据库;期刊分类:自科综合
期刊热词:
施工技术,建筑工程,城市,高速公路,建筑,施工管理,水利工程,智慧城市,建筑设计,大数据,施工技术,建筑工程,施工管理,大数据,城市,公路工程,物联网,城市轨道交通,BIM技术,人工智能,智慧城市,智能建筑,BIM技术,城市,BIM,城市建设,物联网,智能化,智能设计,城市规划,

现在的位置:主页 > 期刊导读 >

电力工业论文_一种基于特征映射与深度学习的虚

来源:智能城市 【在线投稿】 栏目:期刊导读 时间:2021-12-08 09:52

【作者】网站采编

【关键词】

【摘要】文章摘要:智能电网逐步发展为大型电力信息物理系统,信息与物理系统的交互降低了其抵御虚假数据攻击(false data injection attacks, FDIA)的能力。针对这一问题,研究并提出了一种基于

文章摘要:智能电网逐步发展为大型电力信息物理系统,信息与物理系统的交互降低了其抵御虚假数据攻击(false data injection attacks, FDIA)的能力。针对这一问题,研究并提出了一种基于多层递阶融合模糊特征映射方法(multi-layer hierarchical fusion fuzzy feature mapping, MLHFFFM)与条件深度信念网络(deep belief network, DBN)相结合的智能电网虚假数据注入检测方法。首先,对FDIA原理进行分析,基于MLHFFFM结合主成分分析法对智能电网负荷数据进行聚类,选取日负荷与预测日类似的近似日;然后,提出利用条件深度信念神经网络对近似日智能电网负荷进行分析,通过选取不同参数对日负荷特征进行动态捕捉从而检测FDIA;最后,结合某省实际负荷以IEEE33节点系统为例进行分析。案例分析结果表明,所提模型相比于其他模型,在不同攻击强度下准确率均保持在95%以上,错报率在5%以下,能够有效检测出虚假数据的注入。

文章关键词:

项目基金:《智能城市》 网址: http://www.zncszz.cn/qikandaodu/2021/1208/2054.html

上一篇:自然地理学和测绘学论文_多源道路智能选取的本
下一篇:自动化技术论文_基于动态优先级的奖励优化模型

智能城市投稿 | 智能城市编辑部| 智能城市版面费 | 智能城市论文发表 | 智能城市最新目录
Copyright © 20019-2020 智能城市 版权所有
投稿电话: 投稿邮箱: