期刊信息
 

刊名:智能城市
曾用名:现代生活用品
主办:辽宁省科学技术情报研究所
主管:辽宁省科学技术厅
ISSN:2096-1936
CN:21-1602/N
语言:中文
周期:半月刊
影响因子:0
被引频次:9440
数据库收录:
国家哲学社会科学学术期刊数据库;期刊分类:自科综合
期刊热词:
施工技术,建筑工程,城市,高速公路,建筑,施工管理,水利工程,智慧城市,建筑设计,大数据,施工技术,建筑工程,施工管理,大数据,城市,公路工程,物联网,城市轨道交通,BIM技术,人工智能,智慧城市,智能建筑,BIM技术,城市,BIM,城市建设,物联网,智能化,智能设计,城市规划,

现在的位置:主页 > 期刊导读 >

计算机软件及计算机应用论文_基于深度学习的区

来源:智能城市 【在线投稿】 栏目:期刊导读 时间:2022-01-10 12:01

【作者】网站采编

【关键词】

【摘要】文章摘要:针对当前检测方法准确率不高以及模型泛化性较差的问题,提出了基于KOLSTM深度学习模型的蜜罐陷阱合约检测方法。首先,通过分析蜜罐陷阱合约的特点,提出了关键操作码的

文章摘要:针对当前检测方法准确率不高以及模型泛化性较差的问题,提出了基于KOLSTM深度学习模型的蜜罐陷阱合约检测方法。首先,通过分析蜜罐陷阱合约的特点,提出了关键操作码的概念,并设计了可用于选取智能合约中关键操作码的关键词提取方法;其次,在传统的LSTM模型中加入关键操作码权重机制,构建了可以同时捕获蜜罐陷阱合约中隐藏的序列特征以及关键操作码特征的KOLSTM模型。最后,通过实验表明,该模型具有较高的识别准确率,在二分类和多分类检测场景下的F值较现有模型分别提升2.39%与19.51%。

文章关键词:

项目基金:《智能城市》 网址: http://www.zncszz.cn/qikandaodu/2022/0110/2143.html

上一篇:农业经济论文_基于随机森林的耕地质量评价智能
下一篇:植物保护论文_基于人工智能的青菜幼苗与杂草识

智能城市投稿 | 智能城市编辑部| 智能城市版面费 | 智能城市论文发表 | 智能城市最新目录
Copyright © 20019-2020 智能城市 版权所有
投稿电话: 投稿邮箱: