刊名:智能城市
曾用名:现代生活用品
主办:辽宁省科学技术情报研究所
主管:辽宁省科学技术厅
ISSN:2096-1936
CN:21-1602/N
语言:中文
周期:半月刊
影响因子:0
被引频次:9440
数据库收录:
国家哲学社会科学学术期刊数据库;期刊分类:自科综合
期刊热词:
施工技术,建筑工程,城市,高速公路,建筑,施工管理,水利工程,智慧城市,建筑设计,大数据,施工技术,建筑工程,施工管理,大数据,城市,公路工程,物联网,城市轨道交通,BIM技术,人工智能,智慧城市,智能建筑,BIM技术,城市,BIM,城市建设,物联网,智能化,智能设计,城市规划,
文章摘要:在电力物联网的背景下,为提高传统智能变电站故障诊断能力,提出基于希尔伯特-黄和卷积神经网络相融合的智能变电站故障诊断方法.将智能变电站中的故障录波数据作为故障诊断数据,利用希尔伯特-黄变换提取综合电流的故障特征,通过训练好的卷积神经网络实行故障定位.以典型的110 kV智能变电站为例进行仿真测试,测试结果表明:增加数据增强模块能有效提高卷积神经网络模型的泛化能力;选择合适的卷积神经网络模型参数能有效提高故障诊断正确率和降低训练时间;相对于其他2种方法,该方法有较高的故障诊断正确率.
文章关键词:
论文分类号:TM63;TP183
文章来源:《智能城市》 网址: http://www.zncszz.cn/qikandaodu/2022/0121/2182.html